

HOR09-03. Evaluación de cultivares de cebollas amarillas, blancas y rojas de días cortos en época seca

José Renán Marcia y Ostilio R. Portillo Programa de Hortalizas

RESUMEN

Diez híbridos de cebolla amarilla, seis híbridos de cebolla roja y dos de cebolla blanca fueron evaluados. Dichos materiales mostraron buenas características de forma, tamaño y coloración de bulbos. Respecto a los híbridos de color amarillo, los mejores rendimientos comerciales se obtuvieron con Yellow granex el cual registró 52,588 kg.ha⁻¹, seguido por el cultivar Kalahari con un rendimiento comercial de 49,438.5 kg.ha⁻¹; el menor rendimiento comercial lo obtuvo el cultivar Ada 781 con apenas 34,586.1 kg.ha⁻¹. Respecto a la producción de bulbos dobles, los híbridos Appolo, Martin y Ada 781 obtuvieron los mayores porcentajes con 18.45, 16.6 v 13.4%, respectivamente; no así el cultivar Kalahari que obtuvo el menor porcentaje de bulbos dobles con 0.33%. En relación a los híbridos de cebolla roja, el cultivar Rasta obtuvo el mayor rendimiento comercial con 42,563 kg.ha⁻¹, un peso promedio de bulbo de 260.8 g y con el menor porcentaje de bulbos dobles (1.6%); El material con menor rendimiento comercial fue Lambada con 31,171 kg.ha⁻¹. Finalmente entre los híbridos de cebolla blanca, los cultivares Azteca y Carta blanca presentaron rendimientos comerciales de 46,139 y 37,910 kg.ha⁻¹ respectivamente; ambos cultivares presentaron un alto porcentaje de bulbos podridos con 7.3 y 19.6%, respectivamente. Es importante mencionar que entre los cultivares amarillos solamente Ponderosa, Amazon, Serengeti y Yellow granex produjeron bulbos de primera clase (jumbo) entre ls cultivares rojos solo Neptuno produjo bulbos de primera clase.

Palabras claves: días después del trasplante (ddt), rendimiento total (RT), rendimiento comercial (RC), hipótesis nula (H_0), hipótesis alternativa (H_a), análisis de varianza (ANAVA), coeficiente de determinación (R^2), coeficiente de variación (R^2).

INTRODUCCION

El cultivo de cebolla amarilla y roja en Honduras tiene una demanda muy fuerte tanto para su consumo fresco como para proceso, lo cual ha generado que las compañías productoras de semillas cada año generen nuevos materiales genéticos adaptadas a diferentes épocas de siembra y con resistencia a enfermedades. Es importante identificar los materiales más convenientes para cada ciclo de producción.

Los cultivares de días cortos se siembran en el valle de Comayagua del 15 de agosto al 15 de enero; hay cultivares que se adaptan muy bien en época temprana, es decir, siembras de semillero de agosto a octubre, pero no se adaptan para época de fin de temporada, es decir, semilleros preparados de noviembre hasta enero. Dentro de los cultivares a evaluar hay materiales que ya han sido evaluados en ciclos anteriores tales como Ponderosa.

OBJETIVO GENERAL

El objetivo del ensayo fue evaluar nuevos materiales de cebolla con potencial genético para un alto rendimiento con buenas características de bulbo, forma y color con resistencia o tolerancia al ataque de *Alternaria porri*.

MATERIALES Y METODOS

Los tratamientos considerados para esta evaluación de características agronómicas fueron:

No	Híbrido	Compañ	Color de	No	Híbrido	Compañ	Color	de
1.	Ponderosa	Sakata	Amarilla	13	Serengeti	Nunhem	Amarilla	
2.	Azteca	Sakata	Blanca	14	Kalahari	Nunhem	Amarilla	
3.	Yellow	Hazera	Amarilla	15	Rasta	Nunhem	Roja	
4.	Appolo	Hazera	Amarilla	16	Lambada	Nunhem	Roja	
5.	Martin	Hazera	Amarilla	17	Carta	Nunhem	Blanca	
6.	Ada 781	Hazera	Amarilla	18	Matahari	Nunhem	Roja	
7.	Russel	Hazera	Roja					
8.	Neptuno	Hazera	Roja					
9.	Amazon	Hazera	Amarilla					
10.	IPA II	Nunhem	Amarilla					
11.	Alfa	Nunhem	Amarilla					
12.	NUM 3001	Nunhem	Roja					

Los semilleros se establecieron el 13 de noviembre de 2008 y las plántulas fueron trasplantadas al campo definitivo el 6 de enero de 2009 para un total de 56 días en semillero. El ensayo se evaluó en el lote No. 6 del Centro Experimental y Demostrativo de Horticultura (CEDEH) ubicado en el valle de Comayagua, bajo las condiciones ambientales (climáticas y de suelo) prevalecientes durante el periodo comprendido del 6 de enero hasta el 30 de abril de 2009, completando así un ciclo de cultivo de 114 días en un área de 2,500 m².

De acuerdo con los datos proporcionados por la estación meteorológica del CEDEH ubicada a 560 m.s.n.m., durante este periodo se registraron las temperaturas ambientales y precipitaciones pluviales medias favorables para el desarrollo del cultivo (Figuras 1 y 2).

El ensayo experimental fue establecido de la siguiente manera: antes del trasplante se realizó un pase de aradura y dos pases de rastra, un bordeo y rotatiller. Después de 56 días en el semillero las plántulas fueron trasladadas al campo definitivo donde fueron sembradas en camas de doble hilera de 10 m de largo, 0.8 m de ancho por 0.3 m de alto sobre el nivel del suelo, con acolchado plástico (plástico plata-negro) y distanciadas a 1.5 m entre sí (centro a centro). Las hileras fueron distanciadas a 0.2 m con una distribución de plántulas de 0.1 m entre sí para una densidad de siembra de 266,666 plantas.ha⁻¹.

El nivel de fertilización aplicado a los tratamientos fue de 15.34-11.39-25.77-4.14-4.15-3.62 kg.ha⁻¹ de N-P₂O₅-K₂O-CaO-MgO-S, respectivamente, equivalente a: 23.74 kg.ha⁻¹ de NH₄H₂PO₄ (MAP), 58.56 kg.ha⁻¹ de KNO₃, 13.47 kg.ha⁻¹ de MgSO₄, 9.95 kg.ha⁻¹ de NH₄NO₃

y 14.18 kg.ha⁻¹ de Ca(NO₃)₂. Finalmente, todos los fertilizantes arriba descritos fueron previamente diluidos y aplicados al cultivo a través del sistema de riego por goteo. El Ca(NO₃)₂ fue aplicado por separado para evitar la formación de precipitados los cuales son insolubles y por consiguiente no disponibles para la planta, además de provocar la acumulación de sólidos en la cinta de riego reduciendo así su vida útil.

Previo a la cosecha, se establecieron los rangos de diámetro para la clasificación de los bulbos por clases comerciales tal y como se manejan en el mercado local. Las clases comerciales fueron establecidas de la siguiente manera: primera clase de 4.0 a 4.5", segunda clase de 3.5 a 4.0", tercera clase de 3.0 a 3.5", cuarta clase de 2.5 a 3.0", quinta clase de 2 a 2.5" (Cuadro 1).

La cosecha se realizó a partir del 30 de abril de 2009 y en base a los datos colectados se extrapolaron los rendimientos de cada híbrido en base a una hectárea.

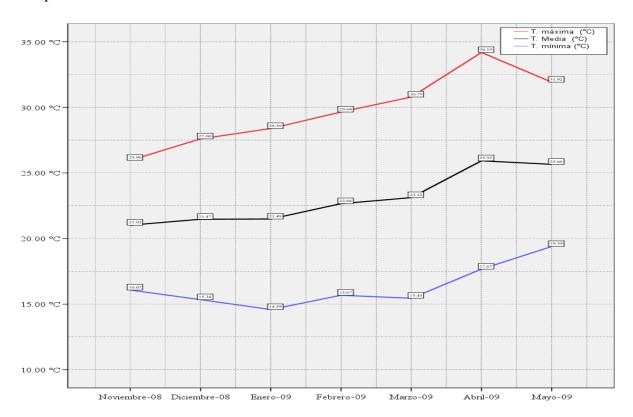


Figura 1. Temperaturas medias ambientales registradas en el valle de Comayagua, CEDEH-FHIA. Comayagua, Comayagua. Honduras. 2008-2009.

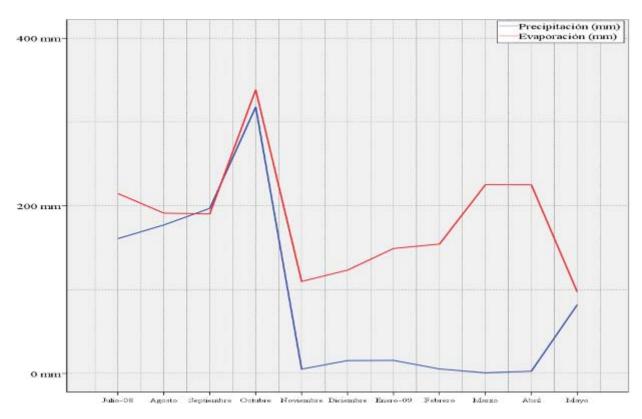


Figura 2. Taza de evaporación y precipitación pluvial acumulada registradas en el valle de Comayagua, CEDEH-FHIA. Comayagua, Comayagua, Honduras. 2008-2009.

Con el propósito de controlar la gradiente en la distribución de sales provocada por el sistema de riego durante la fertigación, el diseño experimental utilizado fue el de bloques completos al azar (D.B.C.A.) con cuatro repeticiones por tratamiento (Figura 3). Cada repetición contaba con una cama de 15 m². Los parámetros de evaluación sometidos a estudio fueron los siguientes: altura de planta (m) a los 30, 60 y 80 ddt; rendimientos totales (kg.ha⁻¹) y rendimientos comerciales por clases comerciales (kg.ha⁻¹, bulbos.ha⁻¹), peso promedio de bulbo (g), diámetro promedio de bulbo (cm), porcentaje de rechazo en sus diferentes conceptos (bulbos podridos y deformes).

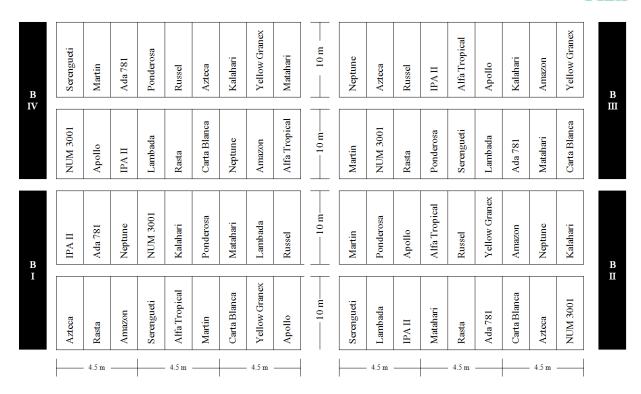


Figura 3. Esquema de distribución de los tratamientos en el lote No.6.

Los datos recolectados fueron sometidos a un análisis de varianza (ANAVA, $\alpha \le 0.05$) con InfoStat versión 2008 de la Universidad de Córdova, Argentina, utilizando el modelo general lineal bajo las siguientes hipótesis: H_0 : $\mu_1 = \mu_2 = \mu_3 = \dots \mu_x$ versus H_a : al menos una μ es diferente. A efecto de determinar la confiabilidad de las conclusiones derivadas de las pruebas estadísticas arriba descritas se verificó la normalidad de residuos estandarizados a través de los test de Shapiro-Wilk (si los grados de libertad ≤ 50 , $\alpha \le 0.05$) y el test de Kolmogorov-Smirnov (si los grados de libertad > de 50, $\alpha \le 0.05$) bajo las siguientes hipótesis: H_0 : Residuos = normalmente distribuido versus H_a : Residuos \ne normalmente distribuido. Así mismo, la homogeneidad de varianzas fue verificada a través del test de Levene ($\alpha \le 0.05$) bajo las siguientes hipótesis: H_0 : $\sigma_1 = \sigma_2 = \sigma_3 = \dots \sigma_x$ versus H_a : $\sigma_1 \ne \sigma_2 \ne \sigma_3 \dots \sigma_x$. Finalmente, cuando el ANAVA detectó diferencias significativas entre los tratamientos se utilizó la diferencia mínima significativa (DMS) de Fisher para separar sus medias.

El análisis de pungencia se realizó utilizando el método desarrollado por Schiwimmer y Weston en 1961 para determinar la concentración de ácido pirúvico presente en la muestra expresada en micromoles por gramo de materia fresca (μ mol.g⁻¹). Los resultados obtenidos son comparados con la escala de valores desarrollada por Vidalia Labs International de Georgia (USA) en la cual las muestras son clasificadas de acuerdo a su concentración de ácido pirúvico de la siguiente manera: < 3.0 μ mol.g⁻¹ cebollas muy suaves, 3 a 4 μ mol.g⁻¹ cebollas suaves, 4 a 5.5 μ mol.g⁻¹ cebollas ligeramente pungentes, 5.5 a 6.0 μ mol.g⁻¹ cebollas poco pungentes y > 6.0 μ mol.g⁻¹ cebollas muy pungentes.

El control fitosanitario consistió en la aplicación de una gama de plaguicidas en las cantidades descritas a continuación:

Producto	Ingrediente activo	Unidad	Dosis/ha	Plaga/enfermedad
Agrimycin	Estreptomicina+oxitetraciclina	kg	1	Protección contra Alternaria porri
Aminocat	Aminoácidos	1	2	Foliar
Antratcol	Propineb	kg	4	Protección contra enfermedades
Bellis	Pyraclostrobin	kg	2.8	Anternaria porri
Bravo	Clorotalonilo	kg	1.4	Anternaria porri
Captan	captan	kg	6	Protección
Curion	Profenofos, Lufenuron	1	1	Trips tabaci
Epingle	Piriproxifen	1	1	Trips tabaci, Spodoptera sp.
Humifer	Aminoácidos	1	4	Foliar
Intrepid	Methoxyfenozide	1	0.3	Spodoptera sp.
Krisol	Thiodicarb	kg	0.3	Masas de huevos de lepidópteros
Liquid feed	Aminoácidos	1	1	Foliar
Malathion	Malation	1	1.2	Trips tabaci
Mancozeb	Mancozeb	kg	2	Protección
Match	Lufenuron	1	0.8	Spodoptera sp.
Muralla	Thiacloprid y Cyflutrina	1	0.5	Trips tabaci, Spodoptera sp.
Pyrimetha	Cypermetrina	1	3	Trips tabaci, Spodoptera sp.
Plural	Imidacloprid	1	1	Trips tabaci
Pronto	Benomil	kg	3	Anternaria porri
Rovral	Iprodione	kg	3	Anternaria porri
Spintor	Spinosad	1	0.6	Spodoptera sp.
Sunfere	Chlorfenapir	1	0.5	Spodoptera sp.
Talstar	Bifentrina	1	1.5	Tetranichus sp. y Spodoptera sp.

Cuadro 1. Híbridos de cebolla amarilla, roja y blanca clasificados en base a clases comerciales, CEDEH-FHIA. 2008-2009.

Híbridos	1ra. clase	2da. clase	3ra. clase	4ta. clase	5ta. clase
Ada 781					
Alfa tropical					
Amazon					
Appolo					
Azteca					
Carta blanca					

Híbridos	1ra. clase	2da. clase	3ra. clase	4ta. clase	5ta. clase
IPA II					
Kalahari					
Lambada					
Martin					
Matahari					
Neptune	B				

Híbridos	1ra. clase	2da. clase	3ra. clase	4ta. clase	5ta. clase
NUM 3001					
Ponderosa					
Rasta					
Russel					
Serengueti					
Yellow granex					

RESULTADOS

Análisis de rendimientos totales (RT) de los cultivares de cebolla amarilla

El ANAVA de los RT (kg.ha⁻¹) detectó evidencia (p-valor: 0.000) en favor de la H_a lo cual sugiere la presencia de diferencias significativas entre tratamientos. Asimismo, el ANAVA de los RT (bulbos/ha) detectó evidencia (p-valor: 0.000) en favor de la H_a lo cual sugiere la presencia de diferencias significativas entre tratamientos. Finalmente, la prueba DMS mostró gráficamente las diferencias entre tratamientos para ambos parámetros de evaluación (Cuadro 2).

Cuadro 2. Rendimientos totales de 10 híbridos de cebolla amarilla, CEDEH-FHIA, 2008-2009.

No	Híbridos	kg.ha ⁻¹	No	. Híbridos	No. de bulbos/ha
1.	Yellow	63,287.4 a	1.	Alfa tropical	278,16 a
2.	Amazon	61,381.3 a	2.	Serengeti	264,33 a b
3.	Appolo	60,960.6 a	3.	IPA II	262,66 a b c
4.	Kalahari	57,559.4 a b	4.	Ponderosa	258,66 a b c d
5.	Ponderosa	54,654.2 a b	5.	Appolo	256,33 a b c d
6.	Serengeti	51,298.3 b c	6.	Kalahari	252,00 b c d
7.	Martin	50,802.2 b c	7.	Yellow	246,00 b c d
8.	Ada 781	42,374.3 c d	8.	Amazon	242,66 b c d
9.	IPA II	41,590.5 d	9.	Martin	237,00 c d
10.	Alfa tropical	39,293.6 d	10	. Ada 781	235,16 d
	CV	12.09%		CV	7.06%
	R^2	75%		\mathbb{R}^2	63%
	Shapiro-Wilk _{p-valor} :	0.307		Shapiro-Wilk p-valor	: 0.811

Medias seguidas por letras distintas dentro de cada columna indican diferencias significativas entre tratamientos según DMS ($\alpha \le 0.05$).

Análisis de rendimientos comerciales (RC) de los híbridos de cebolla amarilla

El ANAVA de los RC (kg.ha⁻¹) detectó evidencia (p-valor: 0.006) en favor de la H_a lo cual sugiere la presencia de diferencias significativas entre tratamientos.). Asimismo, el ANAVA de los RC (bulbos/ha) detectó evidencia (p-valor: 0.000) en favor de la H_a lo cual sugiere la presencia de diferencias significativas entre tratamientos. Finalmente, la prueba DMS mostró gráficamente las diferencias entre tratamientos para ambos parámetros de evaluación (Cuadro 3).

Análisis de rendimientos por clases comerciales de diez híbridos de cebolla amarilla

Bulbos de primera clase

El ANAVA de los rendimientos (kg.ha⁻¹) detectó evidencia (p-valor: 0.000) en favor de la H_a lo cual sugiere la presencia de diferencias significativas entre tratamientos. Asimismo, el ANAVA de los rendimientos (bulbos/ha) detectó evidencia (p-valor: 0.000) en favor de la hipótesis H_a lo cual sugiere la presencia de diferencias significativas entre tratamientos. Finalmente, la prueba DMS mostró gráficamente las diferencias entre tratamientos para ambos parámetros de evaluación (Cuadros 5 y 6).

Cuadro 3. Rendimiento comercial y concentración de acido pirúvico de 10 híbridos de cebolla amarilla, CEDEH-FHIA, Comayagua, Comayagua, Honduras. 2008-2009.

Híbrido	kg.ha ⁻¹	Híbrido	No. de bulbos/ha	Acido pirúvico	[µmol.g ⁻¹]
Yellow granex.	52,588.00 a	Alfa tropical.	256,500 a	Alfa tropical.	0.006
Kalahari.	49,438.50 a b	IPA II.	251,833 a	IPA II.	0.006
Appolo.	47,076.17 a b	Serengeti.	239,667 a b	Serengeti.	0.005
Serengeti.	46,100.00 a b c	Kalahari.	214,167 b c	Kalahari.	0.005
Amazon.	45,201.67 a b c d	Ponderosa.	213,667 b c	Ponderosa.	0.005
Ponderosa.	43,960.83 a b c d e	Yellow granex.	205,167 c	Yellow granex.	0.005
IPA II.	39,817.8 b c d e	Appolo.	202,000 c d	Appolo.	0.005
Martin.	36,563.67 c d e	Ada 781.	198,500 c d e	Ada 781.	0.005
Alfa tropical.	35,566.33 d e	Amazon.	176,167 d e	Amazon.	0.005
Ada 781.	34,586.17 e	Martin.	171,667 e	Martin.	0.006
CV	15.53%	CV	8.95%		
\mathbb{R}^2	55%	\mathbb{R}^2	79%		
Shapiro-Wilk _{p-v}	alor: 0.725	Shapiro-Wilk _{p-}	valor: 0.32		

Bulbos de segunda y tercera clase

El ANAVA de los rendimientos (kg.ha⁻¹) detectó evidencia (p-valor: 0.000) en favor de la H_a lo cual sugiere la presencia de diferencias significativas entre tratamientos para ambos parámetros de evaluación. Asimismo, el ANAVA de los rendimientos (bulbos/ha) detectó evidencia (p-valor: 0.000) en favor de la H_a lo cual sugiere la presencia de diferencias significativas entre tratamientos para ambos parámetros de evaluación. La prueba DMS mostró gráficamente las diferencias entre tratamientos para ambos parámetros de evaluación (Cuadros 5 y 6).

Bulbos de cuarta clase

El ANAVA de los rendimientos (kg.ha⁻¹) detectó evidencia (p-valor: 0.000) en favor de la H_a lo cual sugiere la presencia de diferencias significativas entre tratamientos. Asimismo, el ANAVA de los rendimientos (bulbos/ha) detectó evidencia (p-valor: 0.001) en favor de la hipótesis H_a lo cual sugiere la presencia de diferencias significativas entre tratamientos. Finalmente, la prueba DMS mostró gráficamente las diferencias entre tratamientos para ambos parámetros de evaluación (Cuadros 5 y 6).

Bulbos de quinta clase

El ANAVA de los rendimientos (kg.ha⁻¹) detectó evidencia (p-valor: 0.000) en favor de la H_a lo cual sugiere la presencia de diferencias significativas entre tratamientos. Asimismo, el ANAVA de los rendimientos (bulbos/ha) detectó evidencia (p-valor: 0.000) en favor de la hipótesis H_a lo cual sugiere la presencia de diferencias significativas entre tratamientos. Finalmente, la prueba DMS mostró gráficamente las diferencias entre tratamientos para ambos parámetros de evaluación (Cuadros 5 y 6).

Análisis de diámetros y pesos por clases comerciales de los cultivares de cebolla amarilla

Bulbos de primera clase

El ANAVA del diámetro promedio de bulbos detectó evidencia (p-valor: 0.0001) en favor de la H_a lo cual sugiere la presencia de diferencias significativas entre tratamientos. Asimismo, el ANAVA del peso promedio de bulbos detectó evidencia (p-valor: 0.001) en favor de la hipótesis H_a lo cual sugiere la presencia de diferencias significativas entre tratamientos. Finalmente, la prueba DMS mostró gráficamente las diferencias entre tratamientos para ambos parámetros de evaluación (Cuadros 7 y 8).

Bulbos de segunda, tercera, cuarta y quinta clase

El ANAVA del diámetro promedio de bulbos detectó evidencia (p-valor: 0.000) en favor de la H_a lo cual sugiere la presencia de diferencias significativas entre tratamientos. Asimismo, el ANAVA del peso promedio de bulbos detectó evidencia (p-valor: 0.000) en favor de la hipótesis H_a lo cual sugiere la presencia de diferencias significativas entre tratamientos. Finalmente, la prueba DMS mostró gráficamente las diferencias entre tratamientos para ambos parámetros de evaluación (Cuadros 7 y 8).

Análisis de pungencia de los cultivares de cebolla amarilla

Los resultados revelaron que los cultivares pueden ser clasificados como cebollas muy suaves o extra dulces debido a su bajo contenido de ácido pirúvico (Cuadro 3).

Análisis del descarte de bulbos de los cultivares de cebolla amarilla

El ANAVA del descarte de bulbos (kg.ha⁻¹) detectó evidencia (p-valor: 0.000) en favor de la H_a lo cual sugiere la presencia de diferencias significativas entre tratamientos. Finalmente, la prueba DMS mostró gráficamente las diferencias entre tratamientos para ambos parámetros de evaluación (Cuadro 4).

Cuadro 4. Descarte de bulbos de 10 híbridos de cebolla amarilla, CEDEH-FHIA. 2008-2009.

No.	Híbrido	kg.ha ⁻¹
1.	Amazon	16,179.71 a
2.	Martin	14,238.62 a
3.	Appolo	13,884.51 a
4.	Yellow granex	10,699.40 a b
5.	Ponderosa	10,693.42 a b
6.	Kalahari	8,120.98 b c
7.	Ada 781	7,788.18 b c
8.	Serengeti	5,198.33 b c d
9.	Alfa tropical	3,727.29 c d
10.	IPA II	1,772.75 d
	CV	41.77%
	R^2	69%
	Shapiro-Wilk _{p-valor} :	0.626

Cuadro 5. Rendimientos en peso por clases comerciales de 10 híbridos de cebolla amarilla, CEDEH-FHIA, 2008-2009.

1ra. cl	1ra. clase		2da. clase		31	a. clase		4ta. clase	5ta. clase		
Híbrido	kg.ha ⁻¹		Híbrido	kg.ha ⁻¹		Hibrido	kg.ha ⁻¹	Híbrido	kg.ha ⁻¹	Hibrido	kg.ha ⁻¹
Amazon	2,415.83 a		Amazon	11,494.00 a		Yellow granex	27,181.00 a	Kalahari	25,931.33 a	IPA II	17,449.50 a
Yellow granex	1,616.67 a		Yellow granex	10,426.83 a b		Amazon	19,906.50 a b	Serengeti	23,450.00 a	Alfa tropical	15,283.33 a b
Ponderosa	700.00	b	Ponderosa	6,916.67 b c		Apollo	16,417.83 b c	Apollo	23,126.00 a b	Serengeti	10,866.67 b c
Martin	700.00	b	Martin	4,621.67 c	d	Martin	15,839.17 b c	IPA II	18,604.17 b c	Ada 781	10,532.50 b c
Kalahari	566.67	b	Apollo	2,628.00	d e	Kalahari	14,673.83 b c	Ada 781	17,916.33 c	Ponderosa	7,125.67 c d
Alfa tropical	144.67	b	Kalahari	2,250.17	d e	Ponderosa	13,545.50 b c d	Ponderosa	15,673.00 c d	Kalahari	6,016.50 c d
Apollo	116.67	b	Serengeti	1,633.33	d e	Serengeti	10,050.00 c d	Alfa tropical	14,856.33 c d	Apollo	4,787.67 d
Serengeti	100.00	b	Alfa tropical	881.67	e	Ada 781	5,885.33 d	Martin	12,152.83 d e	Martin	3,250.00 d
Ada 781	0.00	b	Ada 781	252.00	e	Alfa tropical	4,400.33	Yellow granex	10,931.67 d e	Yellow granex	2,431.83 d
IPA II	0.00	b	IPA II	166.67	e	IPA II	3,597.50	Amazon	9,218.67 e	Amazon	2,166.67 d
CV	98.9%		CV	60.02%		CV	43.79%	CV	19.18%	CV	44.28%
\mathbb{R}^2	69%		\mathbb{R}^2	80%		\mathbb{R}^2	70%	\mathbb{R}^2	80%	\mathbb{R}^2	78%
Shapiro-Wilk _{p-val}	lor: 0.115		Shapiro-Wilk _{p-va}	lor: 0.008		Shapiro-Wilk _{p-v}	alor: 0.048	Shapiro-Wilk _{p-v}	ralor: 0.217	Shapiro-Wilk _{p-v}	valor: 0.548

Cuadro 6. Rendimiento en número de bulbos por clases comerciales de 10 híbridos de cebolla amarilla, CEDEH-FHIA, 2008-2009.

1ra	1ra. clase		2da. clase		3r	a. clase	4ta. clase		5ta. clase	
Híbrido	No. de bull	bos/ha	Híbrido	No. de bulbos/ha	Híbrido	No. de bulbos/ha	Híbrido No. de bulb	os/ha	Híbrido	No. de bulbos/ha
Amazon	4,833 a		Amazon	30,333 a	Yellow granex	94,167 a	Kalahari 115,000 a		IPA II	146,500 a
Yellow granex	2,667 b)	Yellow granex	29,000 a	Amazon	71,833 a b	Serengeti 110,500 a		Alfa tropical	145,500 a
Ponderosa	2,000 b	c	Ponderosa	17,667 b	Martin	60,167 b	Apollo 103,333 a b		Serengeti	91,833 b
Martin	1,500 b	c d	Martin	13,500 b c	Ponderosa	54,333 b c	Alfa tropical 93,000 a b	c	Ada 781	88,500 b c
Kalahari	1,000 b	c d	Apollo	6,333 c d	Apollo	53,333 b c	IPA II 92,167 a b	c	Ponderosa	64,500 b c d
Alfa tropical	333	c d	Kalahari	5,333 c d	Kalahari	48,167 b c	Ada 781 88,833 a b	c	Kalahari	44,666 b c d
Serengeti	167	d	Serengeti	3,833 d	Serengeti	33,333 c d	Ponderosa 75,167 b	c d	Apollo	38,833 c d
Apollo	167	d	Alfa tropical	2,333 d	Ada 781	20,500 d	Martin 68,500	c d	Martin	28,000 d
IPA II	0	d	Ada 781	667 d	Alfa tropical	15,333 d	Yellow granex 57,500	d	Yellow granex	21,833 d
Ada 781	0	d	IPA II	500 d	IPA II	12,667 d	Amazon 49,333	d	Amazon	19,833 d
CV	93.6%	ó	CV	59.01%	CV	39.58%	CV 24.34%)	CV	51.37%
\mathbb{R}^2	70%		\mathbb{R}^2	81%	\mathbb{R}^2	74%	R^2 62%		\mathbb{R}^2	75%
Shapiro-Wilk _{p-va}	lor: 0.175	5	Shapiro-Wilk _{p-val}	or: 0.004	Shapiro-Wilk _{p-va}	alor: 0.029	Shapiro-Wilk _{p-valor} : 0.14		Shapiro-Wilk _{p-v}	alor: 0.851

Cuadro 7. Diámetro promedio de bulbos por clases comerciales de 10 híbridos de cebolla amarilla, 2008-2009.

1ra. cl	lase	2da. clase		3ra	ı. clase		4ta. clase	5ta.	clase
Híbrido	Ø (cm)	Híbrido	Ø (cm)	Híbrido	Ø (cm)	Híbrido	Ø (cm)	Híbrido	Ø (cm)
Yellow granex	10.82 a	Martin	9.51 a	Martin	8.62 a	Amazon	7.48 a	Amazon	6.13 a
Amazon	10.42 a b	Yellow granex	9.46 a	Yellow granex	8.46 a b	Yellow granex	7.44 a b	Martin	6.12 a
Ponderosa	10.40 a b	Amazon	9.39 a	Amazon	8.43 a b	Martin	7.37 a b c	Yellow granex	6.09 a
Serengeti	10.32 a b	Apollo	9.28 a	Ponderosa	8.42 a b	Apollo	7.33 b c d	Ponderosa	5.98 a
Martin	10.24 b	Alfa tropical	9.20 a	Apollo	8.23 b c	Ponderosa	7.26 c d e	Kalahari	5.65 b
Kalahari	10.24 b	Serengeti	9.19 a	Kalahari	8.14 b c	Serengeti	7.23 d e	IPA II	5.62 b
IPA II	-	Ponderosa	9.19 a	Serengeti	8.13 b c	Kalahari	7.15 e f	Ada 781	5.55 b c
Apollo	_	Ada 781	8.98 a b	Ada 781	7.98 c d	Ada 781	7.08 f g	Serengeti	5.52 b c
Ada 781	_	IPA II	8.79 a b	IPA II	7.69 d	IPA II	6.98 g 1	1 Apollo	5.52 b c
Alfa tropical	-	Kalahari	8.43 b	Alfa tropical	7.11 e	Alfa tropical	6.95	Alfa tropical	5.40 c
CV	4.76%	CV	10%	CV	13.6%	CV	5.58%	CV	9.96%
\mathbb{R}^2	24%	\mathbb{R}^2	10.76%	\mathbb{R}^2	14.5%	\mathbb{R}^2	18.20%	\mathbb{R}^2	18.50%
Kolmogorov-Smirn	nov _{p-valor} : 0.20	Kolmogorov-Smirn	ov _{p-valor} : 0.00	Kolmogorov-Smirnov _{p-valor} : 0.00		Kolmogorov-Smirnov _{p-valor} : 0.058		Kolmogorov-Smirnov _{p-valor} : 0.0	
Prueba de Lever	ne p-valor: 0.21	Prueba de Lever	ne p-valor: 0.0	Prueba de Lever	ne _{p-valor} : 0.00	Prueba de Lever	ne _{p-valor} : 0.22	Prueba de Leve	ne _{p-valor} : 0.0

Cuadro 8. Peso promedio de bulbos por clases comerciales de 10 híbridos de cebolla amarilla, 2008-2009.

1ra. cl	ase	2da. cl	ase	31	ra. clase		4ta. clase	5ta. clase	
Híbrido	g	Híbrido	g	Híbrido	g	Híbrido	g	Híbrido	g
Serengeti	714.1 a	Apollo	424.88 a	Ponderosa	314.38 a	Apollo	235.56 a	Ponderosa	132.93 a
Yellow granex	664.8 a	Serengeti	410.21 a b	Kalahari	312.19 a	Kalahari	224.70 b	Kalahari	126.04 a b
Kalahari	606.7 a	Yellow granex	394.15 a b	Apollo	310.96 a	Serengeti	217.71 b c	IPA II	125.07 a b
Ponderosa	532.5 a b	Ponderosa	389.44 a b	Serengeti	301.26 a b	Yellow granex	216.11 b c	Yellow	120.56 b c
Amazon	507.3 a b	Kalahari	380.02 a b	Yellow granex	294.17 b	Ponderosa	212.09 c	Serengeti	118.40 b c
Martin	418.5 b	Ada 781	377.62 a b	Ada 781	287.21 b c	IPA II	211.26 c d	Amazon	118.06 b c
IPA II	-	Amazon	375.71 b	Amazon	274.94 c d	Ada 781	202.43 d e	Apollo	115.04 c d
Apollo	-	Alfa tropical	361.33 b	IPA II	273.46 c d	Amazon	198.64 e	Ada 781	114.12 c d
Ada 781	-	IPA II	351.19 b	Martin	268.76 d	Alfa tropical	197.96 e	Martin	111.92 c d
Alfa tropical	-	Martin	344.82	Alfa tropical	244.58 e	Martin	187.85 f	Alfa tropical	106.69 d
CV	24.45%	CV	16.12%	CV	18.24%	CV	14.34%	CV	24.89%
\mathbb{R}^2	39.00%	\mathbb{R}^2	16.00%	\mathbb{R}^2	16.30%	\mathbb{R}^2	20.50%	\mathbb{R}^2	7.40%
Kolmogorov-Smirn	ov _{p-valor} : 0.20	Kolmogorov-Smir	nov _{p-valor} : 0.00	Kolmogorov-Smirnov _{p-valor} : 0.20		Kolmogorov-Smirnov _{p-valor} : 0.011		Kolmogorov-Smirnov _{p-valor} : 0.048	
Prueba de Levene	e _{p-valor} : 0.40	Prueba de Lever	ne _{p-valor} : 0.00	Prueba de Lever	ne p-valor: 0.00	Prueba de Lever	ne _{p-valor} : 0.00	Prueba de Leve	ene _{p-valor} : 0.00

Análisis de rendimientos totales (RT) de bulbos de los cultivares de cebolla roja

El ANAVA de los RT (kg.ha⁻¹) detectó evidencia (p-valor: 0.003) en favor de la H_a lo cual sugiere la presencia de diferencias significativas entre tratamientos. Asimismo, el ANAVA de los RT (bulbos/ha) detectó evidencia (p-valor: 0.012) en favor de la H_a lo cual sugiere la presencia de diferencias significativas entre tratamientos. Finalmente, la prueba DMS mostró gráficamente las diferencias entre tratamientos para ambos parámetros de evaluación (Cuadro 9).

Cuadro 9. Rendimientos totales de seis híbridos de cebolla roja, CEDEH-FHIA, Comayagua, Comayagua, Honduras. 2008-2009.

No.	Híbrido	kg.ha ⁻¹		No.	Híbrido	Número de bu	lbos/ha
	Rasta	59,724.1	a		Matahari	266,333 a	
	Matahari	55,032.6	a b		Russel	258,500 a	b
	Neptune	52,793.8	a b		Neptune	245,333 a	b
	NUM 3001	49,166.1	b c		NUM 3001	236,500 a	b c
	Russel	44,439.4	c		Rasta	229,166	b c
	Lambada	43,033.0	c		Lambada	206,333	c
	CV	10.33%	ó		CV	8.64%	
	R^2	71%			R^2	64%	
	Shapiro-Wilk	_{p-valor} : 0.969			Shapiro-Wil	$k_{p-valor}$: 0.833	

Medias seguidas por letras distintas dentro de cada columna indican diferencias significativas entre tratamientos según DMS ($\alpha \le 0.05$).

Análisis de rendimientos comerciales (RC) de los cultivares de cebolla roja

El ANAVA de los RC (kg.ha⁻¹) detectó evidencia (p-valor: 0.026) en favor de la H_a lo cual sugiere la presencia de diferencias significativas entre tratamientos. Asimismo, el ANAVA de los RC (bulbos/ha) detectó evidencia (p-valor: 0.006) en favor de la hipótesis H_a lo cual sugiere la presencia de diferencias significativas entre tratamientos. Finalmente, la prueba DMS mostró gráficamente las diferencias entre tratamientos para ambos parámetros de evaluación (Cuadro 10).

Cuadro 10. Rendimiento comercial y concentración de acido pirúvico de seis híbridos de cebolla roja, CEDEH-FHIA, Comayagua, Comayagua, Honduras. 2008-2009.

Híbrido	kg.ha ⁻¹	Híbrido	Número de bulbos/ha	Acido pirúvi	co [μmol.g ⁻¹]
Rasta	42,563.50 a	Russel	210,667 a	Russel	0.006
NUM 3001	41,821.50 a	NUM 3001	195,500 a b	NUM 3001	0.005
Matahari	40,895.50 a b	Matahari	193,000 a b	Matahari	0.005
Russel	36,021.00 a b c	Neptune	166,500 b c	Neptune	0.006
Neptune	33,825.17 b c	Rasta	164,167 b c	Rasta	0.006
Lambada	31,171.17 c	Lamabada	147,833 c	Lamabada	0.005
CV	13.28%	CV	11.61%		
R^2	59%	\mathbb{R}^2	68%		
Shapiro-Wi	lk _{p-valor} : 0.762	Shapiro-Wil			

Análisis de rendimientos por clases comerciales de bulbos seis híbridos de cebolla roja

Primera clase

El ANAVA de los rendimientos (kg.ha⁻¹) detectó evidencia (p-valor: 0.294) en favor de la H_o lo cual sugiere la ausencia de diferencias significativas entre tratamientos. Asimismo, el ANAVA de los rendimientos (bulbos/ha) detectó evidencia (p-valor: 0.317) en favor de la H_o lo que sugiere la ausencia de diferencias significativas entre tratamientos. La prueba DMS mostró las diferencias entre tratamientos para ambos parámetros (Cuadros 11 y 12).

Segunda clase

El ANAVA de los rendimientos expresados en kg.ha⁻¹ detectó evidencia (p-valor: 0. 226) en favor de la H_o lo que sugiere la ausencia de diferencias significativas entre tratamientos. Asimismo, el ANAVA de los rendimientos (bulbos/ha) detectó evidencia (p-valor: 0.406) en favor de la hipótesis H_o lo que sugiere la ausencia de diferencias significativas entre tratamientos. La prueba DMS mostró las diferencias entre tratamientos para ambos parámetros de evaluación (Cuadros 11 y 12).

Tercera clase

Eel ANAVA de los rendimientos (kg.ha $^{-1}$) detectó evidencia (p-valor: 0.01) en favor de la H_a lo que sugiere la presencia de diferencias significativas entre tratamientos. Asimismo, el ANAVA de los rendimientos (bulbos/ha) detectó evidencia (p-valor: 0.009) en favor de la hipótesis H_a lo que sugiere la presencia de diferencias significativas entre tratamientos. La prueba DMS mostró las diferencias entre tratamientos para ambos parámetros de evaluación (Cuadros 11 y 12).

Cuarta clase

El ANAVA de los rendimientos (kg.ha⁻¹) detectó evidencia (p-valor: 0.002) en favor de la H_a lo cual sugiere la presencia de diferencias significativas entre tratamientos. Asimismo, el ANAVA de los rendimientos (bulbos/ha) detectó evidencia (p-valor: 0.000) en favor de la hipótesis H_a lo cual sugiere la presencia de diferencias significativas entre tratamientos. La prueba DMS mostró las diferencias entre tratamientos para ambos parámetros de evaluación (Cuadros 11 y 12).

Quinta clase

El ANAVA de los rendimientos (kg.ha⁻¹) detectó evidencia (p-valor: 0.072) en favor de la H_o lo que sugiere la ausencia de diferencias significativas entre tratamientos. Asimismo, el ANAVA de los rendimientos (bulbos/ha) detectó evidencia (p-valor: 0.004) en favor de la hipótesis H_a lo que sugiere la presencia de diferencias significativas entre tratamientos. La prueba DMS mostró las diferencias entre tratamientos para ambos parámetros de evaluación (Cuadros 11 y 12).

Análisis de diámetros y pesos de bulbos por clases comerciales de los cultivares de cebolla roja

Primera clase

El ANAVA del diámetro promedio de bulbos detectó evidencia (p-valor: 0.156) en favor de la H_o lo que sugiere la ausencia de diferencias significativas entre tratamientos. Adicionalmente, la Asimismo, el ANAVA del peso promedio de bulbos detectó evidencia (p-valor: 0.021) en favor de la hipótesis H_a lo que sugiere la presencia de diferencias significativas entre tratamientos.

Finalmente, la prueba DMS mostró las diferencias entre tratamientos para ambos parámetros de evaluación (Cuadros 13 y 14).

Segunda clase

El ANAVA del diámetro promedio de bulbos detectó evidencia (p-valor: 0.029) en favor de la H_a lo que sugiere la presencia de diferencias significativas entre tratamientos. Asimismo, el ANAVA del peso promedio de bulbos detectó evidencia (p-valor: 0.000) en favor de la hipótesis H_a lo que sugiere la presencia de diferencias significativas entre tratamientos. La prueba DMS mostró las diferencias entre tratamientos para ambos parámetros (Cuadros 13 y 14).

Tercera clase

El ANAVA del diámetro promedio de bulbos detectó evidencia (p-valor: 0.206) en favor de la H_o lo que sugiere la ausencia de diferencias significativas entre tratamientos. Asimismo, el ANAVA del peso promedio de bulbos detectó evidencia (p-valor: 0.000) en favor de la hipótesis H_a lo que sugiere la presencia de diferencias significativas entre tratamientos. La prueba DMS mostró las diferencias entre tratamientos para ambos parámetros (Cuadros 13 y 14).

Cuarta clase

El ANAVA del diámetro promedio de bulbos detecto evidencia (p-valor: 0.0596) en favor de la H_o lo que sugiere la ausencia de diferencias significativas entre tratamientos. Asimismo, el ANAVA del peso promedio de bulbos detecto evidencia (p-valor: 0.000) en favor de la hipótesis H_a lo cual sugiere la presencia de diferencias significativas entre tratamientos. Finalmente, la prueba DMS mostro gráficamente las diferencias entre tratamientos para ambos parámetros de evaluación (Cuadros 13 y 14).

Ouinta clase

El ANAVA del diámetro promedio de bulbos detectó evidencia (p-valor: 0.828) en favor de la H_o lo que sugiere la ausencia de diferencias significativas entre tratamientos. Asimismo, el ANAVA del peso promedio de bulbos detectó evidencia (p-valor: 0.000) en favor de la hipótesis H_a lo que sugiere la presencia de diferencias significativas entre tratamientos. Finalmente, la prueba DMS mostó las diferencias entre tratamientos para ambos parámetros de evaluación (Cuadros 13 y 14).

Análisis de pungencia de los cultivares de cebolla roja

Los resultados revelaron que los cultivares pueden ser clasificados como cebollas muy suaves o extra dulces debido a su bajo contenido de ácido pirúvico (Cuadro 10).

Análisis del descarte de bulbos de los cultivares de cebolla roja

El ANAVA del descarte de bulbos (kg.ha⁻¹) detectó evidencia (p-valor: 0.014) en favor de la H_a lo que sugiere la presencia de diferencias significativas entre tratamientos. Finalmente, la prueba DMS mostró las diferencias entre tratamientos para ambos parámetros (Cuadro 15).

Cuadro 11. Rendimiento en peso por clases comerciales de seis híbridos de cebolla roja, CEDEH-FHIA, 2008-2009.

1ra.	clase	2d:	2da. clase		ı. clase		4	ta. clase		5ta. clase		
Híbrido	kg.ha ⁻¹	Híbrido	kg.ha ⁻¹	Híbrido	kg.ha ⁻¹		Híbrido	kg.ha ⁻¹	Híbrid	o kg.ha ⁻¹		
Rasta	481.00 a	Rasta	3,771.83 a	Rasta	20,908.83 a		NUM 3001	26,252.50 a	Russel	6,712.00 a		
Neptune	150.00 a	Russel	3,203.50 a b	Matahari	12,903.00	b	Matahari	21,275.83 a b	Lamabad	a 5,181.83 a b		
Lamabada	116.67 a	Neptune	2,629.33 a b	NUM 3001	11,635.67	b	Lamabada	16,283.00 b	e Neptune	5,133.17 a b		
Russel	83.33 a	o Matahari	1,866.67 a b	Neptune	11,286.50	b	Russel	15,620.33	Matahari	4,850.00 a b c		
NUM 3001	0.00	Lamabada	916.67 a b	Russel	10,401.83	b	Rasta	15,285.17	NUM 30	01 3,600.00 b c		
Matahari	0.00	NUM 3001	333.33 b	Lamabada	8,673.00	b	Neptune	14,626.17	Rasta	2,116.67 c		
CV	221.08%	CV	99.94%	CV	31.64%		CV	19.48%	CV	42.63%		
\mathbb{R}^2	44%	\mathbb{R}^2	36%	\mathbb{R}^2	64%		\mathbb{R}^2	72.30%	\mathbb{R}^2	60%		
Shapiro-Wilk	Shapiro-Wilk _{p-valor} : 0.018 Shapiro-Wilk _{p-valor} : 0.025		ilk _{p-valor} : 0.025	Shapiro-Wilk _{p-valor} : 0.121		Shapiro-Wilk _{p-valor} : 0.750		Shapiro-Wilk _{p-valor} : 0.847				

Cuadro 12. Rendimiento en número de bulbos por clases comerciales de seis híbridos de cebolla roja, CEDEH-FHIA, 2008-2009.

1ra	a. clase	2da. clase		3ra. clase		41	ta. clase		5ta. clase			
Híbrido	No. bulbos/ha	Híbrido	No. bulbos/ha	Híbrido	No. bulbos/	/ha	Híbrido	No. bulbos	s/ha	Híbrido	No. bulk	os/ha
Rasta	1000 a	Russel	11,500 a	Rasta	67,333 a		NUM 3001	127,833 a		Russel	69,833	a
Neptune	333 a b	Rasta	9,167 a	Matahari	47,000	b	Matahari	102,333	b	Neptune	43,500	b
Russel	167 a b	Neptune	6,667 a	Neptune	41,167	b	Russel	89,667	b c	Matahari	39,333	b
Lamabada	167 a b	Matahari	4,333 a	Russel	39,500	b	Lamabada	77,667	c	Lamabada	37,167	b c
NUM 3001	0 b	Lamabada	2,500 a	NUM 3001	37,000	b	Neptune	74,833	c	NUM 3001	29,833	b c
Matahari	0 b	NUM 3001	833 a	Lamabada	30,333	b	Rasta	71,167	c	Rasta	15,500	c
CV	237.32%	CV	133.30%	CV	26.94%		CV	15.40%		CV	38.42	2%
R^2	43%	R^2	30%	\mathbb{R}^2	65.40%		R^2	78.80%		\mathbb{R}^2	73.20)%
Shapiro-Wil	$\mathbf{k}_{ ext{p-valor}}$:	Shapiro-Wil	k _{p-valor} : 0.008	Shapiro-Will	k _{p-valor} : 0.580		Shapiro-Will	k _{p-valor} : 0.834		Shapiro-Will	k _{p-valor} : 0.8	19

Cuadro 13. Diámetro promedio de bulbos por clases comerciales de seis híbridos de cebolla roja, 2008-2009.

1ra. c	clase	2da. cla	ase	3ra	. clase	4ta	. clase	5ta. c	lase
Híbrido	Ø (cm)	Híbrido	Ø (cm)	Híbrido	Ø (cm)	Híbrido	Ø (cm)	Híbrido	Ø (cm)
Neptune	10.55 a	NUM 3001	9.31 a	Neptune	8.28 a	Neptune	7.27 a	Lambada	5.79 a
Lambada	10.15 a	Matahari	9.22 a	NUM 3001	8.20 a b	Matahari	7.21 a b	NUM 3001	5.78 a
Russel	9.80 a	Neptune	9.15 a	Matahari	8.13 a b	NUM 3001	7.20 a b	Neptune	5.75 a
Rasta	9.65 a	Rasta	9.07 a	Rasta	8.09 a b	Russel	7.19 a b	Matahari	5.75 a
NUM 3001	-	Lambada	9.01 a b	Russel	8.07 b	Lambada	7.11 b	Rasta	5.70 a
Matahari	-	Russel	8.77 b	Lambada	8.04 b	Rasta	7.10 b	Russel	5.70 a
CV	71%	CV	5.92%	CV	8.27%	CV	5.43%	CV	8.68%
R^2	97%	R^2	30%	\mathbb{R}^2	9.80%	\mathbb{R}^2	6%	R^2	4.30%
Shapiro-Wilk	o-valor: 0.101	Kolmogorov-Smirn	ov _{p-valor} : 0.001	Kolmogorov-S	mirnov _{p -valor} : 0.20) Kolmogorov-Sr	mirnov _{p -valor} : 0.003	Kolmogorov-Smir	mov _{p-valor} : 0.000
Prueba de Lev	vene _{p-valor} : -	Prueba de Levene p-	valor: 0.219	Prueba de Leve	ene _{p-valor} : 0.000	Prueba de Leve	ne _{p-valor} : 0.037	Prueba de Levene	_{p-valor} : 0.005

Cuadro 14. Peso promedio de bulbos por clases comerciales de seis híbridos de cebolla roja, 2008-2009.

1ra	. clase		20	da. clase		3ra	a. clase		4	ta. clase		5	5ta. clase		
Híbrido	g		Híbrido	g		Híbrido	g		Híbrido	g		Híbrido	g		
Rasta	583.0 _a		Rasta	421.13 a		Rasta	306.40 a		Rasta	224.27 a		Rasta	128.57 a		
Lambada	520.5 t)	NUM 3001	389.71 a	b	Lambada	287.42	b	Lambada	212.41	b	Lambada	127.74 a		
Russel	$436.\hat{7}$	c	Matahari	388.20	b	Neptune	287.22	b	Neptune	210.49	b	NUM 3001	125.71 a	b	
Neptune	398.7	c	Lambada	378.82	b	NUM 3001	286.92	b	NUM 3001	209.39	b	Matahari	123.04 a	b	
NUM 3001	-		Neptune	376.45	b	Matahari	280.69	b	Matahari	208.65	b	Neptune	117.41	b	
Matahari	-		Russel	327.93	c	Russel	255.27	c	Russel	190.28	c	Russel	103.19	c	
CV	56%		CV	13.38	3%	CV	14.44	%	CV	13.13	5%	CV	22.649	%	
\mathbb{R}^2	100%		R^2	40%	ó	\mathbb{R}^2	19.60	%	\mathbb{R}^2	14.20)%	\mathbb{R}^2	12%		
Shapiro-Wilk	x _{p-valor} : 0.101		Kolmogorov	-Smirnov _{p-v}	alor: 0.00	Kolmogorov-S	Smirnov _{p-valo}	or: 0.02	Kolmogorov	-Smirnov _{p-}	valor: 0.20	Kolmogorov-	-Smirnov _{p-valo}	or: 0.20	
Prueba de Le	vene _{p-valor} : -		Prueba de Le	evene _{p-valor} :	0.003	Prueba de Lev	rene _{p-valor} : 0.	.006	Prueba de Le	evene _{p-valor} :	0.074	Prueba de Le	vene _{p-valor} : 0.	.000	

Cuadro 15. Descarte de bulbos de seis híbridos de cebolla roja, CEDEH-FHIA, 2008-2009.

No.	Híbrido	kg.ha ⁻¹			
	Neptune	18,968.66	a		
	Rasta	17,160.63	a	b	
	Matahari	14,137.18	a	b	c
	Lamabada	11,861.88		b	c
	Russel	8,418.46			c
	NUM 3001	7,344.68			c
	CV	35.2%			
	R^2	63%			
	Shapiro-Wilk _{p-va}	olor: 0.05	55		

Análisis de rendimientos totales (RT) de bulbos de los cultivares de cebolla blanca

El ANAVA de los RT (kg.ha⁻¹) detectó evidencia (p-valor: 0.905) en favor de la H_o lo cual sugiere la ausencia de diferencias significativas entre tratamientos. Asimismo, el ANAVA de los RT (bulbos/ha) detectó evidencia (p-valor: 0.505) en favor de la H_o lo cual sugiere la ausencia de diferencias significativas entre tratamientos. La prueba DMS mostró las similitudes entre tratamientos para ambos parámetros de evaluación (Cuadro 16).

Cuadro 16. Rendimientos totales de dos híbridos de cebolla blanca. CEDEH-FHIA, Comayagua, Comayagua, Honduras. 2008-2009.

No.	Híbrido	kg.ha ⁻¹		No.	Híbrido	Número de bulbos/ha		
	Azteca	53,375.09	a		Azteca	244,000 a		
	Carta blanca	53,117.73	a		Carta blanca	239,833 a		
	CV	5.26%			CV	3.22%		
	R^2	76%			R^2	69%		
	Shapiro-Wilk _{p-va}	nlor: 0.948			Shapiro-Wilk	p-valor: 0.842		

Medias seguidas por letras distintas dentro de cada columna indican diferencias significativas entre tratamientos según DMS ($\alpha \le 0.05$).

Análisis de rendimientos comerciales (RC) de los cultivares de cebolla blanca

El ANAVA de los RC (kg.ha⁻¹) detectó evidencia (p-valor: 0.122) en favor de la H_o lo cual sugiere la ausencia de diferencias significativas entre tratamientos. Asimismo, el ANAVA de los RC (bulbos/ha) detectó evidencia (p-valor: 0.038) en favor de la H_a lo cual sugiere la presencia de diferencias significativas entre tratamientos. La prueba DMS mostró las diferencias entre tratamientos para ambos parámetros de evaluación (Cuadro 17).

Cuadro 17. Rendimiento comercial y concentración de acido pirúvico de dos híbridos de cebolla blanca, CEDEH-FHIA, Comayagua, Comayagua, Honduras. 2008-2009.

Híbrido			Híbrido	Número	Número de		úvico [μmol.g ⁻¹]
Azteca	46,139.	a	Azteca	211,667	a	Azteca	0.004
Carta	37,910.	a	Carta	164,500	b	Carta	0.005
CV	6.21%		CV	10.01%			
\mathbb{R}^2	92%		R^2	85%			
Shapiro-Wilk _{p-valor} :			Shapiro-W	ilk _{p-valor} : (0.013		

Análisis de rendimientos por clases comerciales de los cultivares de cebolla blanca

Bulbos de primera clase

El ANAVA de los rendimientos (kg.ha⁻¹) detectó evidencia (p-valor: 0.227) en favor de la H_o lo cual sugiere la ausencia de diferencias significativas entre tratamientos. Asimismo, el ANAVA de los rendimientos (bulbos/ha) detectó evidencia (p-valor: 0.215) en favor de la H_o lo cual sugiere la ausencia de diferencias significativas entre tratamientos. Finalmente, la prueba DMS mostró gráficamente las similitudes entre tratamientos para ambos parámetros de evaluación (Cuadros 18 y 19).

Bulbos de segunda clase

El ANAVA de los rendimientos (kg.ha⁻¹) detectó evidencia (p-valor: 0.329) en favor de la H_o lo cual sugiere la ausencia de diferencias significativas entre tratamientos. Asimismo, el ANAVA de los rendimientos (bulbos/ha) detectó evidencia (p-valor: 0.119) en favor de la H_o lo cual sugiere la ausencia de diferencias significativas entre tratamientos. Finalmente, la prueba DMS mostró gráficamente las similitudes entre tratamientos para ambos parámetros de evaluación (Cuadros 18 y 19).

Bulbos de tercera clase

El ANAVA de los rendimientos (kg.ha⁻¹) detectó evidencia (p-valor: 0.082) en favor de la H_o lo cual sugiere la ausencia de diferencias significativas entre tratamientos. Asimismo, el ANAVA de los rendimientos (bulbos/ha) detectó evidencia (p-valor: 0.066) en favor de la hipótesis H_o lo cual sugiere la ausencia de diferencias significativas entre tratamientos. La prueba DMS mostró gráficamente las similitudes entre tratamientos para ambos parámetros de evaluación (Cuadros 18 y 19).

Bulbos de cuarta clase

El ANAVA de los rendimientos (kg.ha⁻¹) detecto evidencia (p-valor: 0.011) en favor de la H_a lo cual sugiere la presencia de diferencias significativas entre tratamientos. Asimismo, el ANAVA de los rendimientos (bulbos/ha) detecto evidencia (p-valor: 0.001) en favor de la hipótesis H_a lo cual sugiere la presencia de diferencias significativas entre tratamientos. La prueba DMS mostro gráficamente las diferencias entre tratamientos para ambos parámetros de evaluación (Cuadros 19 y 20).

Bulbos de quinta clase

El ANAVA de los rendimientos (kg.ha⁻¹) detectó evidencia (p-valor: 0.04) en favor de la H_a lo cual sugiere la presencia de diferencias significativas entre tratamientos. Asimismo, el ANAVA de los rendimientos (bulbos/ha) detectó evidencia (p-valor: 0.065) en favor de la H_o lo cual sugiere la ausencia de diferencias significativas entre tratamientos. La prueba DMS mostró gráficamente las diferencias entre tratamientos para ambos parámetros de evaluación (Cuadros 18 y 19).

Análisis de diámetros y pesos por clases comerciales de los cultivares de cebolla blanca

Bulbos de segunda clase

El ANAVA del diámetro promedio de bulbos detectó evidencia (p-valor: 0.707) en favor de la H_o lo cual sugiere la ausencia de diferencias significativas entre tratamientos. Asimismo, el ANAVA del peso promedio de bulbos detectó evidencia (p-valor: 0.583) en favor de la hipótesis H_o lo cual sugiere la ausencia de diferencias significativas entre tratamientos. Finalmente, la prueba DMS mostró gráficamente las diferencias entre tratamientos para ambos parámetros de evaluación (Cuadros 20 y 21).

Bulbos de tercera clase

El ANAVA del diámetro promedio de bulbos detectó evidencia (p-valor: 0.000) en favor de la H_a lo cual sugiere la presencia de diferencias significativas entre tratamientos. Asimismo, el ANAVA del peso promedio de bulbos detectó evidencia (p-valor: 0.000) en favor de la hipótesis H_a lo cual sugiere la presencia de diferencias significativas entre tratamientos. Finalmente, la prueba DMS mostró gráficamente las diferencias entre tratamientos para ambos parámetros de evaluación (Cuadros 20 y 21).

Bulbos de cuarta clase

El ANAVA del diámetro promedio de bulbos detectó evidencia (p-valor: 0.017) en favor de la H_a lo cual sugiere la presencia de diferencias significativas entre tratamientos. Asimismo, el ANAVA del peso promedio de bulbos detectó evidencia (p-valor: 0.614) en favor de la hipótesis H_o lo cual sugiere la ausencia de diferencias significativas entre tratamientos. Finalmente, la prueba DMS mostró gráficamente las diferencias entre tratamientos para ambos parámetros de evaluación (Cuadros 20 y 21).

Bulbos de quinta clase

El ANAVA del diámetro promedio de bulbos detectó evidencia (p-valor: 0.001) en favor de la H_a lo cual sugiere la presencia de diferencias significativas entre tratamientos. Asimismo, el ANAVA del peso promedio de bulbos detectó evidencia (p-valor: 0.005) en favor de la hipótesis H_a lo cual sugiere la presencia de diferencias significativas entre tratamientos. Finalmente, la prueba DMS mostró gráficamente las diferencias entre tratamientos para ambos parámetros de evaluación (Cuadros 20 y 21).

Análisis de pungencia de los cultivares de cebolla blanca

Los resultados revelaron que ambos cultivares pueden ser clasificados como cebollas muy suaves o extra dulces debido a su bajo contenido de ácido pirúvico (Cuadro 17).

Cuadro 18. Rendimiento en peso por clases comerciales de dos híbridos de cebolla blanca. CEDEH-FHIA, Comayagua, Comayagua, Honduras. 2008-2009.

1ra. cl	ase	2da. clase		3ra. clase		4ta	. clase	5ta	. clase
Híbrido	kg.ha ⁻¹	Híbrido	kg.ha ⁻¹	Híbrido	kg.ha ⁻¹	Híbrido	kg.ha ⁻¹	Híbrido	kg.ha ⁻¹
Carta blanca	353.33 a	Carta blanca	3,175.67 a	Carta blanca	14,193.67 a	Azteca	24,301.17 a	Azteca	7,435.00 a
Azteca	133.33 a	Azteca	1,703.17 a	Azteca	12,566.83 a	Carta blanca	16,123.67 b	Carta blanca	4,064.33 b
CV	84.50%	CV	73.39%	CV	6.68	CV	10%	CV	23.79%
R ²	85%	R ²	44%	R ²	95%	R ²	94%	R ²	81%
Shapiro-Wilk _{p-}	Shapiro-Wilk _{p-valor} : 0.799 Shap		Shapiro-Wilk _{p-valor} : 0.092		Shapiro-Wilk _{p-valor} : 0.064		Shapiro-Wilk _{p-valor} : 0.992		p-valor: 0.077

Cuadro 19. Rendimiento en número de bulbos por clases comerciales de dos híbridos de cebolla blanca. CEDEH-FHIA, Comayagua, Comayagua, Honduras. 2008-2009.

1ra	. clase	2da	ı. clase	3ra. clase		4ta	. clase	5ta. clase		
Híbrido	No. bulbos/ha	Híbrido	No. bulbos/ha	Híbrido	No. bulbos/ha	Híbrido	No. bulbos/ha	Híbrido	No. bulbos/ha	
Carta blanca	667 a	Carta blanca	8,167 a	Carta blanca	48,167 a	Azteca	104,667 a	Azteca	61,833 a	
Azteca	167 a	Azteca	3,333 a	Azteca	41,667 a	Carta blanca	76,667 b	Carta blanca	30,833 a	
CV	108.32%	CV	54.95%	CV	7.24%	CV	3.42%	CV	33.1%	
R ²	77%	R ²	69%	R ²	96%	\mathbb{R}^2	98%	R ²	77%	
Shapiro-Wilk	_{p-valor} : 0.646	Shapiro-Wilk _p	o-valor: 0.017	Shapiro-Wilk	o-valor: 0.893	Shapiro-Wilk _p	-valor: 0.07	Shapiro-Wilk	Ep-valor: 0.037	

Cuadro 20. Diámetro promedio de bulbos por clases comerciales de dos híbridos de cebolla blanca. CEDEH-FHIA, Comayagua, Comayagua, Honduras. 2008-2009.

1ra. c	lase	2da. clase		3ra. clase		4ta.	clase	5ta. clase	
Híbrido	Ø (cm)	Híbrido	Ø (cm)	Híbrido	Ø (cm)	Híbrido	Ø (cm)	Híbrido	Ø (cm)
Azteca	9.80	Azteca	9.20 a	Carta blanca	8.38 a	Carta blanca	7.33 a	Carta blanca	5.93a
Carta blanca	-	Carta blanca	9.1 a	Azteca	8.06 b	Azteca	7.18 b	Azteca	5.67 b
CV	%	CV	4.01%	CV	4.21%	CV	5.23%	CV	8.49%
\mathbb{R}^2	%	\mathbb{R}^2	7%	\mathbb{R}^2	24%	\mathbb{R}^2	4%	\mathbb{R}^2	25%
Kolmogorov-Smirnov _{p-valor} : -		Kolmogorov-Smirnov _{p-valor} : 0.2		Kolmogorov-Smirnov _{p-valor} : 0.2		Kolmogorov-Smirnov _{p-valor} : 0.2		.2 Kolmogorov-Smirnov _{p-valor} : 0.01	
Prueba de Levene _{p -valor} : -		Prueba de Levene _{p -valor} : 0.092		Prueba de Levene _{p -valor} : 0.142		Prueba de Leve	ne _{p -valor} : 0.048	Prueba de Levene _{p -valor} : 0.002	

Cuadro 21. Peso promedio de bulbos por clases comerciales de dos híbridos de cebolla blanca. CEDEH-FHIA, Comayagua, Comayagua, Honduras. 2008-2009.

1ra. clase		2da. clase		3ra. clase		4ta. clase		5ta. clase	
Híbrido	g	Híbrido	g	Híbrido	g	Híbrido	g	Híbrido	g
Azteca	587.90 a	Azteca	405.47 a	Carta blanca	325.64 a	Carta blanca	230.53 a	Carta blanca	131.08 a
Carta blanca	- a	Carta blanca	396.51 a	Azteca	303.83 b	Azteca	228.34 a	Azteca	119.74 b
CV	-	CV	13.82%	CV	11.70%	CV	11.96%	CV	20.28%
R^2	-	R^2	8%	R^2	11%	R^2	1%	R^2	27.5%
Kolmogorov-Smirnov _{p-valor} :		- Kolmogorov-Smirnov _{p-valor} : 0.01		Kolmogorov-Smirnov _{p-valor} : 0.2		Kolmogorov-Smirnov _{p-valor} : 0.2		Kolmogorov-Smirnov _{p-valor} : 0.09	
Prueba de Levene _{p -valor} : -		Prueba de Levene _{p -valor} : 0.752		Prueba de Levene _{p -valor} : 0.240		Prueba de Levene _{p -valor} : 0.004		Prueba de Levene _{p -valor} : 0.011	

Análisis del descarte de bulbos de los cultivares de cebolla blanca

El ANAVA del descarte de bulbos (kg.ha⁻¹) detectó evidencia (p-valor: 0.022) en favor de la H_a lo cual sugiere la presencia de diferencias significativas entre tratamientos. Finalmente, la prueba DMS mostró gráficamente las diferencias entre tratamientos para ambos parámetros de evaluación (Cuadro 22).

Cuadro 22. Descarte de bulbos de dos híbridos de cebolla blanca. CEDEH-FHIA. Comayagua, Comayagua, Honduras. 2008-2009.

No.	Híbrido	kg.ha ⁻¹	_
	Carta blanca	15,207.06 a	
	Azteca	7,235.59	b
	CV	22.94%	
	R^2	91%	
	Shapiro-Wilk _{p-val}	lor: 0.593	

Medias seguidas por letras distintas dentro de cada columna indican diferencias significativas entre tratamientos según DMS ($\alpha \le 0.05$).

INTERPRETACION Y CONCLUSIONES

Cebollas amarillas

Todos los híbridos estudiados resultaron ser cebollas muy suaves o extra dulces debido a su bajo contenido de ácido pirúvico. En base a los resultados obtenidos de la prueba de separación de medias de los rendimientos totales expresados en kg.ha⁻¹, los 10 híbridos sometidos a evaluación pueden ser agrupados de la siguiente manera: Yellow granex > Amazon > Appolo > Kalahari > Ponderosa > Serengeti > Martin > Ada 781 > IPA II > Alfa tropical (Cuadro 2). Sin embargo, cuando los mismos fueron evaluados en base a sus rendimientos totales expresados en número de bulbos por hectárea estos fueron agrupados de otra manera: Alfa tropical > Serengeti > IPA II > Ponderosa > Appolo > Kalahari > Yellow granex > Amazon > Martin > Ada 781 (Cuadro 2). Por el orden en que los híbridos fueron agrupados en cada análisis podemos inferir una mayor o menor producción de bulbos de mayor o menor tamaño. Por ejemplo, el cultivar Yellow granex registró el mayor rendimiento en kg.ha⁻¹ acumulado en un menor número de bulbos respecto a los demás cultivares; por esto se puede deducir que este cultivar tiende a producir bulbos grandes.

Asimismo, los resultados obtenidos de la prueba de separación de medias de los rendimientos comerciales expresados en kg.ha⁻¹ separan a los diez híbridos de la siguiente manera: Yellow granex > Kalahari > Appolo > Serengeti > Amazon > Ponderosa > IPA II > Martin > Alfa tropical > Ada 781 (Cuadro 3). Sin embargo, cuando el rendimiento comercial (kg.ha⁻¹) de los mismos fue evaluado porcentualmente estos fueron agrupados de otra manera: IPA II (95.71%) > Alfa tropical (90.36%) > Serengeti (90.09%) > Kalahari (85.64%) > Yellow granex (83.55%) > Ada 781 (81.75%) > Ponderosa (80.13%) > Appolo (77.45%) > Amazon (73.15%) > Martin (72.51%). Esto demuestra que híbridos con bajos rendimientos comerciales como IPA II y Alfa tropical fueron más eficientes porcentualmente debido a bajas pérdidas por descarte de bulbos; por el contrario, Yellow granex a pesar de su alto rendimiento comercial no fue el más eficiente debido a un alto porcentaje de rechazo.

Por otro lado, los híbridos Amazon y Yellow granex tienen potencial para la producción de bulbos de buen tamaño ya que registraron los mayores rendimientos de bulbos de 1ra, 2da y 3ra clase tanto en kg.ha⁻¹ así como en número de bulbos por hectárea (Cuadros 4 y 5). De igual manera, ambos híbridos fueron encontrados entre los cultivares con bulbos de mayor diámetro para todas las clases comerciales (Cuadro 6). Esta es una clara ventaja ya que el mercado hondureño está influenciado por consumidores que prefieren bulbos de 2da y 3ra clase. Asimismo, los híbridos Amazon y Yellow granex registraron las menores cantidades de bulbos de 4ta y 5ta clase tanto en kg.ha⁻¹ así como en número de bulbos por hectárea (Cuadros 4 y 5). Ya que existe una baja demanda de mercado para estas categorías, las mismas son penalizadas con bajos precios razón por la cual estos dos híbridos se convierten en la mejor opción para la producción y comercialización de cebollas amarillas dentro de la población bajo estudio.

Los híbridos IPA II y Ada 781 no registraron producción de bulbos de 1ra. clase y se encontraron entre los más deficientes en la producción de bulbos de 2da y 3ra clase, tanto en kg.ha⁻¹ así como en número de bulbos por hectárea (Cuadros 4 y 5). Adicionalmente, Ada 781, IPA II y Alfa tropical se encontraron entre los híbridos con los diámetros más pequeños para bulbos de 2da, 3ra, 4ta y 5ta clase lo que los hace menos atractivos para el mercado local (Cuadro 6).

Finalmente, el análisis del descarte de bulbos revelo que los híbridos Amazon, Martin y Appolo están en desventaja respecto a los demás por haber registrado los niveles más altos (Cuadro 8) equivalentes a 27.5, 26.8 y 22.6% respectivamente. Por el contrario, el híbrido IPA II fue la más eficiente con pérdidas por concepto de descarte equivalente a 4.3% en relación a los rendimientos totales.

Los conceptos de descarte prevalecientes fueron la presencia de bulbos podridos y dobles (Figura 4); sin embargo el más importante es el de bulbos podridos puesto que los bulbos dobles pueden ser comercializados. La presencia de bulbos podridos puede deberse a un mal manejo en poscosecha o a una debilidad inherente de los cultivares afectados.

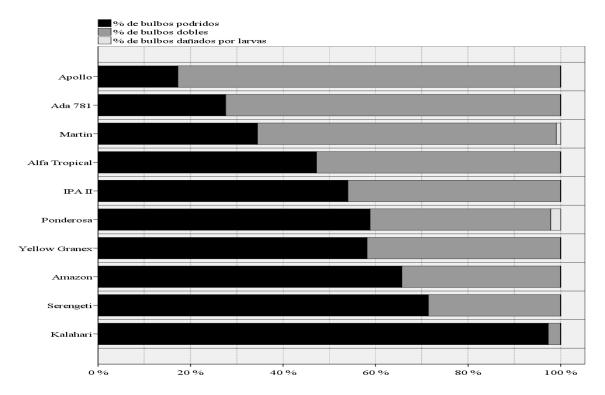


Figura 4. Descarte porcentual de bulbos en sus diferentes conceptos de 10 híbridos de cebolla amarilla. CEDEH-FHIA, Comayagua, Comayagua, Honduras. 2008-2009.

Cebollas rojas

Todos los híbridos estudiados resultaron ser cebollas muy suaves o extra dulces debido a su bajo contenido de ácido pirúvico. En base a los resultados obtenidos de la prueba de separación de medias de los rendimientos totales expresados en kg.ha⁻¹, los 10 híbridos sometidos a evaluación pueden ser agrupados de la siguiente manera: Rasta > Matahari > Neptune > NUM 3001 > Russel > Lamabada (Cuadro 9). Sin embargo, cuando los mismos fueron evaluados en base a sus rendimientos totales expresados en número de bulbos por hectárea fueron agrupados de otra manera: Matahari > Russel > Neptune > NUM 3001 > Rasta > Lambada (Cuadro 9). Por el orden en que los híbridos fueron agrupados en cada análisis podemos inferir una mayor o menor producción de bulbos de mayor o menor tamaño. Por ejemplo, Rasta registró el mayor rendimiento en kg.ha⁻¹ en un menor número de bulbos respecto a los demás híbridos; por esto se puede deducir que este tiende a producir bulbos grandes.

Asimismo, los resultados obtenidos de la prueba de separación de medias de los rendimientos comerciales expresados en kg.ha⁻¹ separan a los diez híbridos de la siguiente manera: Rasta > NUM 3001 > Matahari > Russel > Neptune > Lamabada (Cuadro 10). Sin embargo, cuando el rendimiento comercial (kg.ha⁻¹) de los mismos fue evaluado porcentualmente estos fueron agrupados de otra manera: NUM 3001 (84.73%) > Russel (80.91%) > Matahari (74.44%) > Lamabada (72.71%) > Rasta (72.30%) > Neptune (63.93%). Esto demuestra que Rasta con un alto rendimiento comercial no fue el más eficiente; por el contrario, NUM 3001 ocupó el segundo lugar en rendimientos comerciales y fue el más eficiente porcentualmente hablando.

Por otro lado, el híbrido Rasta tiene potencial para la producción de bulbos de buen tamaño ya que registró los mayores rendimientos de bulbos de 1ra, 2da y 3ra clase tanto en kg.ha⁻¹ así como en número de bulbos por hectárea de 1ra y 3ra clase (Cuadros 12 y 13). Asimismo, Rasta registró los bulbos de mayor peso para todas las clases comerciales, seguido por Lambada el cual ocupó el segundo lugar respecto al peso promedio de bulbos para todas las clases comerciales exceptuando los bulbos de 2da. clase (Cuadro 15). Esta es una buena característica va que se requiere de menor número de bulbos para llenar una bolsa de 50 lb la cual es la unidad de comercialización de cebolla en el mercado hondureño. Por otro lado, Rasta se encontró entre los híbridos que registraron las menores cantidades de bulbos de 4ta y 5ta clase tanto en kg.ha⁻¹ así como en número de bulbos por hectárea (Cuadros 12 y 13). Como ya se mencionó, el mercado hondureño tiene preferencia por los bulbos de 2da y 3ra clase, mientras que los bulbos de 4ta y 5ta clase tienen baja demanda y son penalizadas con bajos precios. Por esta razón, Rasta se convierte en la mejor opción para la producción y comercialización de cebollas rojas dentro de la población bajo estudio. Adicionalmente, el híbrido Neptune registró los mayores diámetros para bulbos de primera, tercera y cuarta clase (Cuadro 14) pero en general el peso promedio de sus bulbos no figuró entre los altos (Cuadro 15).

Finalmente, el análisis del descarte de bulbos reveló que los híbridos Neptune, Rasta y Matahari están en desventaja respecto a los demás por haber registrado los más altos niveles (Cuadro 11) equivalentes a 36.07, 27.7 y 27.29%, respectivamente, con relación a los rendimientos totales. Por el contrario, NUM 3001 y Russel fueron los más eficientes con pérdidas por concepto de descarte equivalentes a 15.3 y 19.1%, respectivamente, respecto a los rendimientos totales. Los conceptos de descarte prevalecientes fueron la presencia de bulbos podridos y dobles; pero el más importante es el de bulbos podridos por razones ya descritas (Figura 5).

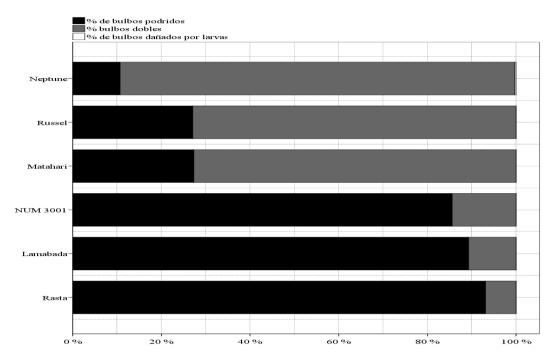


Figura 5. Descarte porcentual de bulbos en sus diferentes conceptos de seis híbridos de cebolla roja. CEDEH-FHIA, Comayagua, Comayagua, Honduras. 2008-2009.

Cebollas blancas

Todos los híbridos estudiados resultaron ser cebollas muy suaves o extra dulces debido a su bajo contenido de ácido pirúvico. En base a los resultados obtenidos de la prueba de separación de medias de los rendimientos totales expresados tanto en kg.ha⁻¹ así como en número de bulbos por hectárea, los dos híbridos pueden ser agrupados de la siguiente manera: Azteca > Carta blanca (Cuadro 16). De igual manera, los resultados obtenidos de la prueba de separación de medias de los rendimientos comerciales expresados en kg.ha⁻¹ y número de bulbos por hectárea agrupan a los dos híbridos de la siguiente manera: Azteca > Carta blanca (Cuadro 17). Cuando el rendimiento comercial expresado en kg.ha⁻¹ fue evaluado porcentualmente estos fueron agrupados de la misma forma: Azteca (86.77%) > Carta blanca (71.19%). Esto demuestra que el híbrido Azteca no solo tiene altos rendimientos en kg.ha⁻¹ y número de bulbos con calidad comercial por hectárea, si no que también fue la más eficiente porcentualmente debido a que el híbrido Carta blanca registró mayores pérdidas por descarte de bulbos.

A pesar de tener un menor rendimiento comercial, el híbrido Carta blanca tiene potencial para la producción de bulbos de buen tamaño ya que registró los mayores rendimientos de bulbos de 1ra, 2da y 3ra clase tanto en kg.ha⁻¹ así como en número de bulbos por hectárea (Cuadros 19 y 20). Asimismo, Carta blanca superó a su contraparte respecto al diámetro y peso de bulbos de 3ra., 4ta. y 5ta. clase (Cuadros 21 y 22). Esta es una buena característica ya que se requiere de menor número de bulbos para llenar una bolsa de 50 lb la cual es la unidad de comercialización de cebolla en el mercado hondureño.

Por otro lado, Azteca superó a Carta blanca en la producción de bulbos de 4ta y 5ta clase tanto en kg.ha⁻¹ así como en número de bulbos por hectárea (Cuadros 19 y 20) por lo que se concluye que el híbrido Azteca tiende a producir bulbos de menor tamaño. Como ya se mencionó, el mercado hondureño tiene preferencia por los bulbos de 2da y 3ra clase, mientras que los bulbos de 4ta y 5ta clase tienen baja demanda y son penalizadas con bajos precios. Por esta razón, el cultivar Carta blanca se convierte en la mejor opción para la producción y comercialización de cebollas blancas dentro de la población bajo estudio.

Finalmente, el análisis del descarte general de bulbos reveló que el híbrido Carta blanca está en desventaja respecto a Azteca por haber registrado el nivel más alto equivalente a 28.81% versus 13.23%, respectivamente (Cuadro 18), con relación a los rendimientos totales. Los conceptos de descarte prevalecientes fueron la presencia de bulbos podridos y dobles (Figura 6).

RECOMENDACIONES

Debido a que el análisis de los datos colectados se llevó a cabo utilizando el modelo lineal general (GLM por sus siglas en Ingles) donde las variables independientes, tratamientos y bloques, fueron analizadas como factores fijos, todas las conclusiones arriba descritas son validas para el ambiente bajo el cual el ensayo se desarrolló por lo que, estadísticamente hablando, no pueden ser utilizadas para hacer inferencias acerca del comportamiento de dichas híbridos en diferentes ambientes. En conclusión, si se desea hacer recomendaciones a productores de cebolla del valle de Comayagua es necesario llevar a cabo al menos dos nuevas evaluaciones para así poder realizar un análisis de estabilidad.

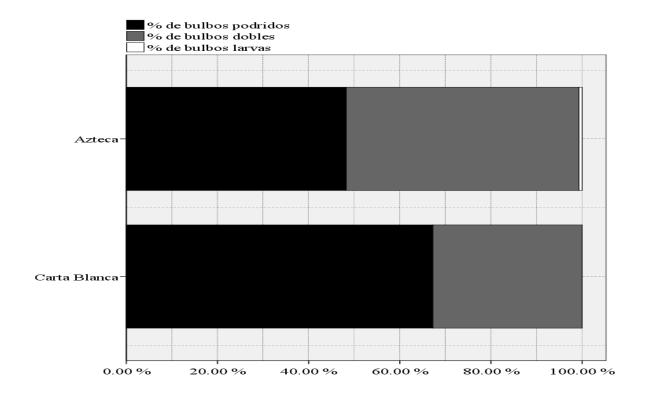


Figura 6. Descarte porcentual de bulbos en sus diferentes conceptos de dos híbridos de cebolla blanca. CEDEH-FHIA, Comayagua, Comayagua, Honduras. 2008-2009.